Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
medRxiv ; 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38352379

ABSTRACT

Background & Aims: Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver pathology in western countries, with serious public health consequences. Efforts to identify causal genes for NAFLD have been hampered by the relative paucity of human data from gold-standard magnetic resonance quantification of hepatic fat. To overcome insufficient sample size, genome-wide association studies using NAFLD surrogate phenotypes have been used, but only a small number of loci have been identified to date. In this study, we combined GWAS of NAFLD composite surrogate phenotypes with genetic colocalization studies followed by functional in vitro screens to identify bona fide causal genes for NAFLD. Approach & Results: We used the UK Biobank to explore the associations of our novel NAFLD score, and genetic colocalization to prioritize putative causal genes for in vitro validation. We created a functional genomic framework to study NAFLD genes in vitro using CRISPRi. Our data identify VKORC1, TNKS, LYPLAL1 and GPAM as regulators of lipid accumulation in hepatocytes and suggest the involvement of VKORC1 in the lipid storage related to the development of NAFLD. Conclusions: Complementary genetic and genomic approaches are useful for the identification of NAFLD genes. Our data supports VKORC1 as a bona fide NAFLD gene. We have established a functional genomic framework to study at scale putative novel NAFLD genes from human genetic association studies.

2.
Am J Physiol Cell Physiol ; 325(3): C648-C660, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37486064

ABSTRACT

CROP-Seq combines gene silencing using CRISPR interference with single-cell RNA sequencing. Here, we applied CROP-Seq to study adipogenesis and adipocyte biology. Human preadipocyte SGBS cell line expressing KRAB-dCas9 was transduced with a sgRNA library. Following selection, individual cells were captured using microfluidics at different timepoints during adipogenesis. Bioinformatic analysis of transcriptomic data was used to determine the knockdown effects, the dysregulated pathways, and to predict cellular phenotypes. Single-cell transcriptomes recapitulated adipogenesis states. For all targets, over 400 differentially expressed genes were identified at least at one timepoint. As a validation of our approach, the knockdown of PPARG and CEBPB (which encode key proadipogenic transcription factors) resulted in the inhibition of adipogenesis. Gene set enrichment analysis generated hypotheses regarding the molecular function of novel genes. MAFF knockdown led to downregulation of transcriptional response to proinflammatory cytokine TNF-α in preadipocytes and to decreased CXCL-16 and IL-6 secretion. TIPARP knockdown resulted in increased expression of adipogenesis markers. In summary, this powerful, hypothesis-free tool can identify novel regulators of adipogenesis, preadipocyte, and adipocyte function associated with metabolic disease.NEW & NOTEWORTHY Genomics efforts led to the identification of many genomic loci that are associated with metabolic traits, many of which are tied to adipose tissue function. However, determination of the causal genes, and their mechanism of action in metabolism, is a time-consuming process. Here, we use an approach to determine the transcriptional outcome of candidate gene knockdown for multiple genes at the same time in a human cell model of adipogenesis.


Subject(s)
Metabolic Diseases , RNA, Guide, CRISPR-Cas Systems , Humans , Adipogenesis/genetics , Adipocytes/metabolism , Cell Line , Metabolic Diseases/metabolism , Cell Differentiation/genetics
3.
Br J Pharmacol ; 179(19): 4709-4721, 2022 10.
Article in English | MEDLINE | ID: mdl-35751904

ABSTRACT

BACKGROUND AND PURPOSE: Tyrosine kinase inhibitors (TKI) used to treat chronic myeloid leukaemia (CML) have been associated with cardiovascular side effects, including reports of calcific aortic valve stenosis. The aim of this study was to establish the effects of first and second generation TKIs in aortic valve stenosis and to determine the associated molecular mechanisms. EXPERIMENTAL APPROACH: Hyperlipidemic APOE*3Leiden.CETP transgenic mice were treated with nilotinib, imatinib or vehicle. Human valvular interstitial cells (VICs) were isolated and studied in vitro. Gene expression analysis was perfromed in aortic valves from 64 patients undergoing aortic valve replacement surgery. KEY RESULTS: Nilotinib increased murine aortic valve thickness. Nilotinib, but not imatinib, promoted calcification and osteogenic activation and decreased autophagy in human VICs. Differential tyrosine kinase expression was detected between healthy and calcified valve tissue. Transcriptomic target identification revealed that the discoidin domain receptor DDR2, which is preferentially inhibited by nilotinib, was predominantly expressed in human aortic valves but markedly downregulated in calcified valve tissue. Nilotinib and selective DDR2 targeting in VICs induced a similar osteogenic activation, which was blunted by increasing the DDR2 ligand, collagen. CONCLUSIONS AND IMPLICATIONS: These findings suggest that inhibition of DDR2 by nilotinib promoted aortic valve thickening and VIC calcification, with possible translational implications for cardiovascular surveillance and possible personalized medicine in CML patients.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Discoidin Domain Receptor 2 , Animals , Aortic Valve/metabolism , Aortic Valve/pathology , Aortic Valve Stenosis/drug therapy , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/metabolism , Calcinosis/drug therapy , Calcinosis/genetics , Calcinosis/metabolism , Cells, Cultured , Discoidin Domain Receptor 2/metabolism , Discoidin Domain Receptors/metabolism , Humans , Imatinib Mesylate , Mice , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Pyrimidines
4.
Hepatol Commun ; 6(7): 1516-1526, 2022 07.
Article in English | MEDLINE | ID: mdl-35293152

ABSTRACT

Genetic predisposition and unhealthy lifestyle are risk factors for nonalcoholic fatty liver disease (NAFLD). We investigated whether the genetic risk of NAFLD is modified by physical activity, muscular fitness, and/or adiposity. In up to 242,524 UK Biobank participants without excessive alcohol intake or known liver disease, we examined cross-sectional interactions and joint associations of physical activity, muscular fitness, body mass index (BMI), and a genetic risk score (GRS) with alanine aminotransferase (ALT) levels and the proxy definition for suspected NAFLD of ALT levels > 30 U/L in women and >40 U/L in men. Genetic predisposition to NAFLD was quantified using a GRS consisting of 68 loci known to be associated with chronically elevated ALT. Physical activity was assessed using accelerometry, and muscular fitness was estimated by measuring handgrip strength. We found that increased physical activity and grip strength modestly attenuate genetic predisposition to elevation in ALT levels, whereas higher BMI markedly amplifies it (all p values < 0.001). Among those with normal weight and high level of physical activity, the odds of suspected NAFLD were 1.6-fold higher in those with high versus low genetic risk (reference group). In those with high genetic risk, the odds of suspected NAFLD were 12-fold higher in obese participants with low physical activity versus those with normal weight and high physical activity (odds ratio for NAFLD = 19.2 and 1.6, respectively, vs. reference group). Conclusion: In individuals with high genetic predisposition for NAFLD, maintaining a normal body weight and increased physical activity may reduce the risk of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Adiposity/genetics , Cross-Sectional Studies , Exercise , Female , Genetic Predisposition to Disease , Hand Strength , Humans , Male , Non-alcoholic Fatty Liver Disease/epidemiology , Obesity/complications , Risk Factors
5.
Arterioscler Thromb Vasc Biol ; 42(5): 659-676, 2022 05.
Article in English | MEDLINE | ID: mdl-35321563

ABSTRACT

BACKGROUND: Understanding the processes behind carotid plaque instability is necessary to develop methods for identification of patients and lesions with stroke risk. Here, we investigated molecular signatures in human plaques stratified by echogenicity as assessed by duplex ultrasound. METHODS: Lesion echogenicity was correlated to microarray gene expression profiles from carotid endarterectomies (n=96). The findings were extended into studies of human and mouse atherosclerotic lesions in situ, followed by functional investigations in vitro in human carotid smooth muscle cells (SMCs). RESULTS: Pathway analyses highlighted muscle differentiation, iron homeostasis, calcification, matrix organization, cell survival balance, and BCLAF1 (BCL2 [B-cell lymphoma 2]-associated transcription factor 1) as the most significant signatures. BCLAF1 was downregulated in echolucent plaques, positively correlated to proliferation and negatively to apoptosis. By immunohistochemistry, BCLAF1 was found in normal medial SMCs. It was repressed early during atherogenesis but reappeared in CD68+ cells in advanced plaques and interacted with BCL2 by proximity ligation assay. In cultured SMCs, BCLAF1 was induced by differentiation factors and mitogens and suppressed by macrophage-conditioned medium. BCLAF1 silencing led to downregulation of BCL2 and SMC markers, reduced proliferation, and increased apoptosis. Transdifferentiation of SMCs by oxLDL (oxidized low-denisty lipoprotein) was accompanied by upregulation of BCLAF1, CD36, and CD68, while oxLDL exposure with BCLAF1 silencing preserved MYH (myosin heavy chain) 11 expression and prevented transdifferentiation. BCLAF1 was associated with expression of cell differentiation, contractility, viability, and inflammatory genes, as well as the scavenger receptors CD36 and CD68. BCLAF1 expression in CD68+/BCL2+ cells of SMC origin was verified in plaques from MYH11 lineage-tracing atherosclerotic mice. Moreover, BCLAF1 downregulation associated with vulnerability parameters and cardiovascular risk in patients with carotid atherosclerosis. CONCLUSIONS: Plaque echogenicity correlated with enrichment of distinct molecular pathways and identified BCLAF1, previously not described in atherosclerosis, as the most significant gene. Functionally, BCLAF1 seems necessary for survival and transdifferentiation of SMCs into a macrophage-like phenotype. The role of BCLAF1 in plaque vulnerability should be further evaluated.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Repressor Proteins/metabolism , Animals , Atherosclerosis/diagnostic imaging , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cell Transdifferentiation , Humans , Lipids , Mice , Myocytes, Smooth Muscle/metabolism , Plaque, Atherosclerotic/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Repressor Proteins/genetics , Transcriptome , Tumor Suppressor Proteins/genetics , Ultrasonography
6.
Antibiotics (Basel) ; 10(4)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807404

ABSTRACT

Introduction: Antibiotics are commonly prescribed in primary care for acute respiratory tract complaints (aRTCs), often inappropriately. Social marketing interventions could improve prescribing in such settings. We evaluate the impact of a social marketing intervention on general practitioners' (GPs') antibiotic prescribing for aRTCs in Malta. Methods: Changes in GPs' antibiotic prescribing were monitored over two surveillance periods between 2015 and 2018. Primary outcome: change in antibiotic prescription for aRTCs. Secondary outcomes: change in antibiotic prescription: (i) for immediate use, (ii) for delayed antibiotic prescription, (iii) by diagnosis, and (iv) by antibiotic class. Data were analysed using clustered analysis and interrupted time series analysis (ITSA). Results: Of 33 participating GPs, 18 successfully completed the study. Although clustered analyses showed a significant 3% decrease in overall antibiotic prescription (p = 0.024), ITSA showed no significant change overall (p = 0.264). Antibiotic prescription decreased significantly for the common cold (p < 0.001), otitis media (p = 0.044), and sinusitis (p = 0.004), but increased for pharyngitis (p = 0.015). Conclusions: The intervention resulted in modest improvements in GPs' antibiotic prescribing. A more top-down approach will likely be required for future initiatives to be successful in this setting, focusing on diagnostic and prescribing support like rapid diagnostic testing, prescribing guidelines, and standardised delayed antibiotic prescriptions.

7.
Int J Mol Sci ; 20(6)2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30934548

ABSTRACT

Autophagy serves as a cell survival mechanism which becomes dysregulated under pathological conditions and aging. Aortic valve thickening and calcification causing left ventricular outflow obstruction is known as calcific aortic valve stenosis (CAVS). CAVS is a chronic and progressive disease which increases in incidence and severity with age. Currently, no medical treatment exists for CAVS, and the role of autophagy in the disease remains largely unexplored. To further understand the role of autophagy in the progression of CAVS, we analyzed expression of key autophagy genes in healthy, thickened, and calcified valve tissue from 55 patients, and compared them with nine patients without significant CAVS, undergoing surgery for aortic regurgitation (AR). This revealed a upregulation in autophagy exclusively in the calcified tissue of CAVS patients. This difference in autophagy between CAVS and AR was explored by LC3 lipidation in valvular interstitial cells (VICs), revealing an upregulation in autophagic flux in CAVS patients. Inhibition of autophagy by bafilomycin-A1 led to a decrease in VIC survival. Finally, treatment of VICs with high phosphate led to an increase in autophagic activity. In conclusion, our data suggests that autophagy is upregulated in the calcified tissue of CAVS, serving as a compensatory and pro-survival mechanism.


Subject(s)
Aortic Valve Stenosis/pathology , Aortic Valve/pathology , Autophagy , Calcinosis/pathology , Up-Regulation , Aortic Valve Insufficiency/pathology , Cell Survival , Humans , Lysosomes/metabolism
8.
BMC Med Genet ; 19(1): 39, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29514624

ABSTRACT

BACKGROUND: Takotsubo cardiomyopathy (TCM), also known as "broken heart syndrome", is a type of heart failure characterized by transient ventricular dysfunction in the absence of obstructive coronary lesions. Although associated with increased levels of catecholamines, pathophysiological mechanisms are unknown. Relapses and family heritability indicate a genetic predisposition. Several small studies have investigated associations between three different loci; the ß1-adrenic receptor (ADRB1), G-protein-coupled receptor kinase 5 (GRK5), Bcl-associated athanogene 3 (BAG3) and TCM but no consensus has been reached. METHODS: Participants were recruited using the Swedish Coronary Angiography and Angioplasty Register (SCAAR). TCM patients without coronary artery disease (CAD)(n = 258) were identified and age- and sex-matched subjects with (n = 164) and without (n = 243) CAD were selected as controls. DNA was isolated from saliva and genotyped for candidate single nucleotide polymorphisms in the ADRB1, GRK5 and BAG3 genes. Allele frequencies and Odds Ratios (OR) with 95% Confidence Intervals (CI) for the investigated polymorphisms were compared, respectively calculated for TCM patients and controls. RESULTS: There were no differences in allele frequencies between TCM patients and controls. OR (CI) for TCM patients having at least one minor allele using controls as reference were 1.07 (0.75-1.55) for ADRB1, 0.45 (0.11-1.85) for GRK5 and 1.27 (0.74-2.19) for BAG3. CONCLUSION: By genotyping a large takotsubo cohort, we demonstrate a lack of association between candidate SNPs in the ADRB1, GRK5 and BAG3 genes, earlier suggested to contribute to TCM. Our result indicates a need to expand the search for new genetic candidates contributing to TCM.


Subject(s)
Genetic Predisposition to Disease , Takotsubo Cardiomyopathy/diagnosis , Takotsubo Cardiomyopathy/genetics , Adaptor Proteins, Signal Transducing/genetics , Aged , Apoptosis Regulatory Proteins/genetics , Case-Control Studies , Cohort Studies , Coronary Artery Disease/genetics , Female , G-Protein-Coupled Receptor Kinase 5/genetics , Gene Frequency , Genotyping Techniques , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Receptors, Adrenergic, beta-1/genetics , Surveys and Questionnaires , Sweden
9.
Mol Ther ; 26(4): 1040-1055, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29503197

ABSTRACT

miRNAs are potential regulators of carotid artery stenosis and concordant vulnerable atherosclerotic plaques. Hence, we analyzed miRNA expression in laser captured micro-dissected fibrous caps of either ruptured or stable plaques (n = 10 each), discovering that miR-21 was significantly downregulated in unstable lesions. To functionally evaluate miR-21 in plaque vulnerability, miR-21 and miR-21/apolipoprotein-E double-deficient mice (Apoe-/-miR-21-/-) were assessed. miR-21-/- mice lacked sufficient smooth muscle cell proliferation in response to carotid ligation injury. When exposing Apoe-/-miR-21-/- mice to an inducible plaque rupture model, they presented with more atherothrombotic events (93%) compared with miR-21+/+Apoe-/- mice (57%). We discovered that smooth muscle cell fate in experimentally induced advanced lesions is steered via a REST-miR-21-REST feedback signaling pathway. Furthermore, Apoe-/-miR-21-/- mice presented with more pronounced atherosclerotic lesions, greater foam cell formation, and substantially higher levels of arterial macrophage infiltration. Local delivery of a miR-21 mimic using ultrasound-targeted microbubbles into carotid plaques rescued the vulnerable plaque rupture phenotype. In the present study, we identify miR-21 as a key modulator of pathologic processes in advanced atherosclerosis. Targeted, lesion site-specific overexpression of miR-21 can stabilize vulnerable plaques.


Subject(s)
Atherosclerosis/genetics , Atherosclerosis/pathology , MicroRNAs/genetics , Animals , Apoptosis/genetics , Carotid Artery Diseases/genetics , Carotid Artery Diseases/pathology , Disease Models, Animal , Fibrosis , Gene Expression Profiling , Gene Transfer Techniques , Genotype , Humans , Immunohistochemistry , Lipoproteins, LDL/metabolism , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Knockout , MicroRNAs/administration & dosage , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology
10.
Atherosclerosis ; 266: 196-204, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29040868

ABSTRACT

BACKGROUND AND AIMS: Increased proinsulin relative to insulin levels have been associated with subclinical atherosclerosis (measured by carotid intima-media thickness (cIMT)) and are predictive of future cardiovascular disease (CVD), independently of established risk factors. The mechanisms linking proinsulin to atherosclerosis and CVD are unclear. A genome-wide meta-analysis has identified nine loci associated with circulating proinsulin levels. Using proinsulin-associated SNPs, we set out to use a Mendelian randomisation approach to test the hypothesis that proinsulin plays a causal role in subclinical vascular remodelling. METHODS: We studied the high CVD-risk IMPROVE cohort (n = 3345), which has detailed biochemical phenotyping and repeated, state-of-the-art, high-resolution carotid ultrasound examinations. Genotyping was performed using Illumina Cardio-Metabo and Immuno arrays, which include reported proinsulin-associated loci. Participants with type 2 diabetes (n = 904) were omitted from the analysis. Linear regression was used to identify proinsulin-associated genetic variants. RESULTS: We identified a proinsulin locus on chromosome 15 (rs8029765) and replicated it in data from 20,003 additional individuals. An 11-SNP score, including the previously identified and the chromosome 15 proinsulin-associated loci, was significantly and negatively associated with baseline IMTmean and IMTmax (the primary cIMT phenotypes) but not with progression measures. However, MR-Eggers refuted any significant effect of the proinsulin-associated 11-SNP score, and a non-pleiotropic SNP score of three variants (including rs8029765) demonstrated no effect on baseline or progression cIMT measures. CONCLUSIONS: We identified a novel proinsulin-associated locus and demonstrated that whilst proinsulin levels are associated with cIMT measures, proinsulin per se is unlikely to have a causative effect on cIMT.


Subject(s)
Carotid Artery Diseases/genetics , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Proinsulin/genetics , Vascular Remodeling/genetics , Asymptomatic Diseases , Carotid Artery Diseases/blood , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/physiopathology , Carotid Intima-Media Thickness , Chromosomes, Human, Pair 15 , Europe , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Linear Models , Male , Phenotype , Proinsulin/blood , Quantitative Trait Loci , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...